Numerical obstructions to abelian surfaces in toric Fano 4-folds
نویسنده
چکیده
Theorem 1 Suppose X is a smooth toric Fano 4-fold. Then X admits a totally nondegenerate abelian surface if X = P4, if X = P1 × P3 (type B4), or if X is a product of two smooth toric Del Pezzo surfaces (i.e. of type C4, D13, H8, L7, L8, L9, Q10, Q11, K4, U5, S2 × S2, S2 × S3 or S3 × S3). Otherwise there is no such embedding, unless possibly X is of type C3, D7, D10, D11, D14, D17, D18, G3, G4, G5, L11, L13, I9, Q16, U8, V4, W, Z1 or Z2.
منابع مشابه
Remarks on abelian surfaces in nonsingular toric Fano 4-folds
In this paper, we investigate whether the 124 nonsingular toric Fano 4-folds admit totally nondegenerate embeddings from abelian surfaces or not. As a result, we determine the possibilities for such embeddings except for the remaining 21 nonsingular toric Fano 4-folds.
متن کاملThe classification of smooth toric weakened Fano 3-folds
We completely classify toric weakened Fano 3-folds, that is, smooth toric weak Fano 3-folds which are not Fano but are deformed to smooth Fano 3-folds. There exist exactly 15 toric weakened Fano 3-folds up to isomorphisms.
متن کاملAbelian surfaces in toric 4-folds
There are embeddings of complex abelian surfaces in P but it was shown by Van de Ven in [17] that no abelian d-fold can be embedded in P if d ≥ 3. Hulek [9], Lange [13], Birkenhake [4] and Bauer and Szemberg [3] have all investigated the possibility of replacing P with a product of projective spaces. Furthermore, Lange [14] studies the rank 2 bundle on P × P that arises from the abelian surface...
متن کاملToric Fano Varieties and Birational Morphisms
Smooth toric Fano varieties are classified up to dimension 4. In dimension 2, there are five toric Del Pezzo surfaces: P, P1×P1, and Si, the blowup of P in i points, for i = 1, 2, 3. There are 18 toric Fano 3-folds [2, 20] and 124 toric Fano 4-folds [4, 17]. In higher dimensions, little is known about them and many properties that hold in low dimensions are not known to hold in general. Let X b...
متن کاملSmooth Toric Fano Five-folds of Index Two
In this paper, we classify smooth toric Fano 5-folds of index 2. There exist exactly 10 smooth toric Fano 5-folds of index 2 up to isomorphisms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007